Molecular physiology of low-voltage-activated t-type calcium channels.

نویسنده

  • Edward Perez-Reyes
چکیده

T-type Ca2+ channels were originally called low-voltage-activated (LVA) channels because they can be activated by small depolarizations of the plasma membrane. In many neurons Ca2+ influx through LVA channels triggers low-threshold spikes, which in turn triggers a burst of action potentials mediated by Na+ channels. Burst firing is thought to play an important role in the synchronized activity of the thalamus observed in absence epilepsy, but may also underlie a wider range of thalamocortical dysrhythmias. In addition to a pacemaker role, Ca2+ entry via T-type channels can directly regulate intracellular Ca2+ concentrations, which is an important second messenger for a variety of cellular processes. Molecular cloning revealed the existence of three T-type channel genes. The deduced amino acid sequence shows a similar four-repeat structure to that found in high-voltage-activated (HVA) Ca2+ channels, and Na+ channels, indicating that they are evolutionarily related. Hence, the alpha1-subunits of T-type channels are now designated Cav3. Although mRNAs for all three Cav3 subtypes are expressed in brain, they vary in terms of their peripheral expression, with Cav3.2 showing the widest expression. The electrophysiological activities of recombinant Cav3 channels are very similar to native T-type currents and can be differentiated from HVA channels by their activation at lower voltages, faster inactivation, slower deactivation, and smaller conductance of Ba2+. The Cav3 subtypes can be differentiated by their kinetics and sensitivity to block by Ni2+. The goal of this review is to provide a comprehensive description of T-type currents, their distribution, regulation, pharmacology, and cloning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low voltage-activated calcium channels in vascular smooth muscle: T-type channels and AVP-stimulated calcium spiking.

An important path of extracellular calcium influx in vascular smooth muscle (VSM) cells is through voltage-activated Ca2+ channels of the plasma membrane. Both high (HVA)- and low (LVA)-voltage-activated Ca2+ currents are present in VSM cells, yet little is known about the relevance of the LVA T-type channels. In this report, we provide molecular evidence for T-type Ca2+ channels in rat arteria...

متن کامل

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

How do T-type calcium channels control low-threshold exocytosis?

Low-voltage-activated T-type calcium channels act as a major pathway for calcium entry near the resting membrane potential in a wide range of neuronal cell types. Several reports have uncovered an unrecognized feature of T-type channels in the control of vesicular neurotransmitter and hormone release, a process so far thought to be mediated exclusively by high-voltage-activated calcium channels...

متن کامل

T-type calcium channels are regulated by hypoxia/reoxygenation in ventricular myocytes.

Low-voltage-activated calcium channels are reexpressed in ventricular myocytes in pathological conditions associated with hypoxic episodes, but a direct relation between oxidative stress and T-type channel function and regulation in cardiomyocytes has not been established. We aimed to investigate low-voltage-activated channel regulation under oxidative stress in neonatal rat ventricular myocyte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physiological reviews

دوره 83 1  شماره 

صفحات  -

تاریخ انتشار 2003